Pyrolytic carbon resonators for micromechanical thermal analysis
نویسندگان
چکیده
منابع مشابه
Gallium nitride micromechanical resonators for IR detection
This paper reports on a novel technology for low-noise un-cooled detection of infrared (IR) radiation using a combination of piezoelectric, pyroelectric, electrostrictive, and resonant effects. The architecture consists of a parallel array of high-Q gallium nitride (GaN) micro-mechanical resonators coated with an IR absorbing nanocomposite. The nanocomposite absorber converts the IR energy into...
متن کاملHigh-frequency micromechanical columnar resonators.
High-frequency silicon columnar microresonators are fabricated using a simple but effective technological scheme. An optimized fabrication scheme was invented to obtain mechanically protected microcolumns with lateral dimensions controlled on a scale of at least 1 μm. In this paper, we investigate the influence of the environmental conditions on the mechanical resonator properties. At ambient c...
متن کاملMicromechanical Resonators for Oscillators and Filters
Fully monolithic, high-Q, micromechanical signal processors are described. A completely monolithic high-Q oscillator, fabricated via a combined CMOS plus surface micromachining technology, is detailed, for which the oscillation frequency is controlled by a polysilicon micromechanical resonator to achieve high stability. The operation and performance of μmechanical resonators are modelled, with ...
متن کاملMicromechanical Analysis of Thermal Expansion Coefficients
Thermal expansion coefficients play an important role in the design and analysis of composite structures. A detailed analysis of thermo-mechanical distortion can be performed on microscopic level of a structure. However, for a design and analysis of large structures, the knowledge of effective material properties is essential. Thus, either a theoretical prediction or a numerical estimation of t...
متن کاملFunctionalized Micromechanical Resonators with High Quality Factors
The dissipation of mechanical energy in 250-nm-thick, MHz-range silicon resonators is found to be strongly dependent on the chemical nature of the surface. As a result, sub-monolayer changes in the termination of 250-nm-thick resonators lead to significant changes in quality (Q) factor. The chemical origins of this effect are under investigation. Strategies for the formation of arbitrarily func...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Microsystems & Nanoengineering
سال: 2019
ISSN: 2055-7434
DOI: 10.1038/s41378-019-0094-x